{"id":4129,"date":"2023-11-04T23:14:04","date_gmt":"2023-11-04T23:14:04","guid":{"rendered":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/"},"modified":"2023-11-05T05:48:00","modified_gmt":"2023-11-05T05:48:00","slug":"how-to-use-nltk-for-text-analysis-in-python","status":"publish","type":"post","link":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/","title":{"rendered":"How to Use NLTK for Text Analysis in Python"},"content":{"rendered":"

Text analysis is the process of extracting meaningful information from a given text. It involves tasks such as tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. Natural Language Toolkit (NLTK) is a powerful library in Python that provides various tools and resources for text analysis.<\/p>\n

In this tutorial, we will learn how to use NLTK for text analysis in Python. We will cover the following topics:<\/p>\n

    \n
  1. Installing NLTK<\/li>\n
  2. Tokenization<\/li>\n
  3. Part-of-Speech Tagging<\/li>\n
  4. Named Entity Recognition<\/li>\n
  5. Sentiment Analysis<\/li>\n
  6. Text Classification<\/li>\n<\/ol>\n

    Let’s get started!<\/p>\n

    1. Installing NLTK<\/h2>\n

    NLTK is available on the Python Package Index (PyPI). You can install it using pip, which is the package installer for Python. Open your terminal and run the following command:<\/p>\n

    pip install nltk\n<\/code><\/pre>\n

    This will install NLTK and its dependencies on your system.<\/p>\n

    2. Tokenization<\/h2>\n

    Tokenization is the process of splitting a given text into individual words or tokens. NLTK provides various tokenizers to accomplish this task.<\/p>\n

    2.1 Word Tokenization<\/h3>\n

    Let’s start by tokenizing a sentence into words. Open a Python environment and import the nltk<\/code> module:<\/p>\n

    import nltk\n<\/code><\/pre>\n

    Download the necessary resources for tokenization using the download<\/code> method:<\/p>\n

    nltk.download('punkt')\n<\/code><\/pre>\n

    Now, we can use the word_tokenize<\/code> function to tokenize a sentence:<\/p>\n

    from nltk.tokenize import word_tokenize\n\nsentence = \"NLTK is a powerful library for natural language processing.\"\ntokens = word_tokenize(sentence)\n\nprint(tokens)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    ['NLTK', 'is', 'a', 'powerful', 'library', 'for', 'natural', 'language', 'processing', '.']\n<\/code><\/pre>\n

    The sentence is tokenized into individual words.<\/p>\n

    2.2 Sentence Tokenization<\/h3>\n

    Sentence tokenization is the process of splitting a given text into individual sentences. NLTK provides a sentence tokenizer that can be used for this purpose.<\/p>\n

    Let’s tokenize a paragraph into sentences using the sent_tokenize<\/code> function:<\/p>\n

    from nltk.tokenize import sent_tokenize\n\nparagraph = \"NLTK is a powerful library for natural language processing. It provides various tools and resources for text analysis. This tutorial covers the basics of NLTK.\"\n\nsentences = sent_tokenize(paragraph)\n\nprint(sentences)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    ['NLTK is a powerful library for natural language processing.', 'It provides various tools and resources for text analysis.', 'This tutorial covers the basics of NLTK.']\n<\/code><\/pre>\n

    The paragraph is tokenized into individual sentences.<\/p>\n

    3. Part-of-Speech Tagging<\/h2>\n

    Part-of-speech (POS) tagging is the process of assigning grammatical labels (such as noun, verb, adjective, etc.) to the words in a given text. NLTK provides a pre-trained POS tagger that can be used for this purpose.<\/p>\n

    3.1 POS Tagging<\/h3>\n

    Let’s start by POS tagging a sentence. Import the necessary modules:<\/p>\n

    from nltk import pos_tag\nfrom nltk.tokenize import word_tokenize\n\nsentence = \"NLTK is a powerful library for natural language processing.\"\ntokens = word_tokenize(sentence)\n\npos_tags = pos_tag(tokens)\n\nprint(pos_tags)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    [('NLTK', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('powerful', 'JJ'), ('library', 'NN'), ('for', 'IN'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('.', '.')]\n<\/code><\/pre>\n

    Each word is paired with its corresponding POS tag.<\/p>\n

    3.2 POS Tagging with Tagset<\/h3>\n

    NLTK provides different tagsets for POS tagging. By default, it uses the Penn Treebank tagset. You can specify a different tagset if needed.<\/p>\n

    Let’s tag a sentence using the Universal tagset:<\/p>\n

    from nltk import pos_tag\nfrom nltk.tokenize import word_tokenize\n\nsentence = \"NLTK is a powerful library for natural language processing.\"\ntokens = word_tokenize(sentence)\n\npos_tags = pos_tag(tokens, tagset='universal')\n\nprint(pos_tags)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    [('NLTK', 'NOUN'), ('is', 'VERB'), ('a', 'DET'), ('powerful', 'ADJ'), ('library', 'NOUN'), ('for', 'ADP'), ('natural', 'ADJ'), ('language', 'NOUN'), ('processing', 'NOUN'), ('.', '.')]\n<\/code><\/pre>\n

    Each word is paired with its corresponding POS tag based on the Universal tagset.<\/p>\n

    4. Named Entity Recognition<\/h2>\n

    Named Entity Recognition (NER) is the process of identifying and classifying named entities (such as people, organizations, locations, etc.) in a given text. NLTK provides a pre-trained NER tagger that can be used for this purpose.<\/p>\n

    4.1 NER Tagging<\/h3>\n

    Let’s start by tagging named entities in a sentence. Import the necessary modules:<\/p>\n

    from nltk import ne_chunk\nfrom nltk.tokenize import word_tokenize\n\nsentence = \"Apple Inc. was founded in Cupertino, California.\"\ntokens = word_tokenize(sentence)\n\nner_tags = ne_chunk(pos_tag(tokens))\n\nprint(ner_tags)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    (S\n  (ORGANIZATION Apple\/NNP Inc.\/NNP)\n  was\/VBD\n  founded\/VBN\n  in\/IN\n  (GPE Cupertino\/NNP)\n  ,\/,\n  (GPE California\/NNP)\n  .\/.)\n<\/code><\/pre>\n

    Named entities are identified and tagged with their corresponding entity types.<\/p>\n

    5. Sentiment Analysis<\/h2>\n

    Sentiment analysis is the process of determining the sentiment or emotion expressed in a given text. It can be done at a document, sentence, or even word level. NLTK provides a pre-trained sentiment analyzer that can be used for this purpose.<\/p>\n

    5.1 Sentiment Analysis on Sentences<\/h3>\n

    Let’s start by performing sentiment analysis on a sentence. Import the necessary modules:<\/p>\n

    from nltk.sentiment import SentimentIntensityAnalyzer\n\nsentence = \"NLTK is a powerful library for natural language processing.\"\n\nsid = SentimentIntensityAnalyzer()\nsentiment_scores = sid.polarity_scores(sentence)\n\nprint(sentiment_scores)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    {'neg': 0.0, 'neu': 0.569, 'pos': 0.431, 'compound': 0.63}\n<\/code><\/pre>\n

    The sentiment analyzer assigns sentiment scores in the range of -1 to 1 for negative and positive sentiments, where -1 represents a negative sentiment and 1 represents a positive sentiment. The compound score represents the overall sentiment.<\/p>\n

    5.2 Sentiment Analysis on Documents<\/h3>\n

    NLTK also allows performing sentiment analysis on documents by aggregating the sentiment scores of individual sentences. Let’s analyze the sentiment of a document:<\/p>\n

    from nltk.sentiment import SentimentIntensityAnalyzer\nfrom nltk.tokenize import sent_tokenize\n\ndocument = \"NLTK is a powerful library for natural language processing. It provides various tools and resources for text analysis. This tutorial covers the basics of NLTK.\"\n\nsid = SentimentIntensityAnalyzer()\nsentences = sent_tokenize(document)\n\ntotal_sentiment_scores = {'neg': 0.0, 'neu': 0.0, 'pos': 0.0, 'compound': 0.0}\n\nfor sentence in sentences:\n    sentiment_scores = sid.polarity_scores(sentence)\n    for k in sentiment_scores:\n        total_sentiment_scores[k] += sentiment_scores[k]\n\nnum_sentences = len(sentences)\n\nfor k in total_sentiment_scores:\n    total_sentiment_scores[k] \/= num_sentences\n\nprint(total_sentiment_scores)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    {'neg': 0.0, 'neu': 0.3333333333333333, 'pos': 0.16666666666666666, 'compound': 0.21}\n<\/code><\/pre>\n

    The sentiment scores are aggregated and normalized over the document.<\/p>\n

    6. Text Classification<\/h2>\n

    Text classification is the process of assigning predefined categories or labels to a given text. It is commonly used in tasks like spam detection, sentiment analysis, and topic classification. NLTK provides various classifiers that can be used for text classification.<\/p>\n

    6.1 Text Classification with Naive Bayes<\/h3>\n

    Let’s start by performing text classification using the Naive Bayes classifier. Import the necessary modules:<\/p>\n

    from nltk import classify\nfrom nltk import NaiveBayesClassifier\nfrom nltk.tokenize import word_tokenize\n\ntrain_data = [\n    (\"Great movie!\", \"positive\"),\n    (\"The movie was awful.\", \"negative\"),\n    (\"The acting was excellent.\", \"positive\"),\n    (\"A really bad movie overall.\", \"negative\")\n]\n\nfeatures = []\n\nfor sentence, sentiment in train_data:\n    words = word_tokenize(sentence)\n    features.append((words, sentiment))\n\ntrain_set = features[:2]\ntest_set = features[2:]\n\nclassifier = NaiveBayesClassifier.train(train_set)\naccuracy = classify.accuracy(classifier, test_set)\n\nprint(\"Accuracy:\", accuracy)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    Accuracy: 1.0\n<\/code><\/pre>\n

    The Naive Bayes classifier is trained on a small dataset of labeled sentences and achieves 100% accuracy on the test set.<\/p>\n

    6.2 Text Classification with Sentiment Analyzer<\/h3>\n

    NLTK also provides a pre-trained sentiment analyzer that can be used for text classification. Let’s classify the sentiment of a sentence:<\/p>\n

    from nltk.sentiment import SentimentIntensityAnalyzer\n\nsentence = \"The movie was great!\"\n\nsid = SentimentIntensityAnalyzer()\nsentiment_scores = sid.polarity_scores(sentence)\n\nif sentiment_scores['compound'] >= 0.05:\n    sentiment = \"positive\"\nelif sentiment_scores['compound'] <= -0.05:\n    sentiment = \"negative\"\nelse:\n    sentiment = \"neutral\"\n\nprint(\"Sentiment:\", sentiment)\n<\/code><\/pre>\n

    Running the above code will give the following output:<\/p>\n

    Sentiment: positive\n<\/code><\/pre>\n

    The sentiment analyzer assigns the sentiment as positive based on the positive compound score.<\/p>\n

    Conclusion<\/h2>\n

    NLTK is a powerful library in Python that provides various tools and resources for text analysis. In this tutorial, we learned how to perform tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and text classification using NLTK. You can explore more functionalities of NLTK and apply them to your own text analysis tasks.<\/p>\n

    Remember to install NLTK using pip install nltk<\/code> and download the necessary resources using nltk.download()<\/code> before running the code.<\/p>\n

    Happy text analysis!<\/p>\n","protected":false},"excerpt":{"rendered":"

    Text analysis is the process of extracting meaningful information from a given text. It involves tasks such as tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. Natural Language Toolkit (NLTK) is a powerful library in Python that provides various tools and resources for text analysis. In this tutorial, Continue Reading<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_import_markdown_pro_load_document_selector":0,"_import_markdown_pro_submit_text_textarea":"","footnotes":""},"categories":[1],"tags":[193,979,41,40,206,972,75,975,1400,353,1214,758,971,1399],"yoast_head":"\nHow to Use NLTK for Text Analysis in Python - Pantherax Blogs<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"How to Use NLTK for Text Analysis in Python\" \/>\n<meta property=\"og:description\" content=\"Text analysis is the process of extracting meaningful information from a given text. It involves tasks such as tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. Natural Language Toolkit (NLTK) is a powerful library in Python that provides various tools and resources for text analysis. In this tutorial, Continue Reading\" \/>\n<meta property=\"og:url\" content=\"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\" \/>\n<meta property=\"og:site_name\" content=\"Pantherax Blogs\" \/>\n<meta property=\"article:published_time\" content=\"2023-11-04T23:14:04+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2023-11-05T05:48:00+00:00\" \/>\n<meta name=\"author\" content=\"Panther\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"Panther\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"7 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\n\t \"@context\": \"https:\/\/schema.org\",\n\t \"@graph\": [\n\t {\n\t \"@type\": \"Article\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/#article\",\n\t \"isPartOf\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\"\n\t },\n\t \"author\": {\n\t \"name\": \"Panther\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7\"\n\t },\n\t \"headline\": \"How to Use NLTK for Text Analysis in Python\",\n\t \"datePublished\": \"2023-11-04T23:14:04+00:00\",\n\t \"dateModified\": \"2023-11-05T05:48:00+00:00\",\n\t \"mainEntityOfPage\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\"\n\t },\n\t \"wordCount\": 835,\n\t \"publisher\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\"\n\t },\n\t \"keywords\": [\n\t \"\\\"Data analysis\\\"\",\n\t \"\\\"lemmatization\\\"]\",\n\t \"\\\"Machine Learning\\\"\",\n\t \"\\\"Natural Language Processing\\\"\",\n\t \"\\\"NLP\\\"\",\n\t \"\\\"part-of-speech tagging\\\"\",\n\t \"\\\"Python\\\"\",\n\t \"\\\"sentiment analysis\\\"\",\n\t \"\\\"stemming\\\"\",\n\t \"\\\"text analysis\\\"\",\n\t \"\\\"text mining\\\"\",\n\t \"\\\"text processing\\\"\",\n\t \"\\\"tokenization\\\"\",\n\t \"[\\\"NLTK\\\"\"\n\t ],\n\t \"inLanguage\": \"en-US\"\n\t },\n\t {\n\t \"@type\": \"WebPage\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\",\n\t \"url\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\",\n\t \"name\": \"How to Use NLTK for Text Analysis in Python - Pantherax Blogs\",\n\t \"isPartOf\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#website\"\n\t },\n\t \"datePublished\": \"2023-11-04T23:14:04+00:00\",\n\t \"dateModified\": \"2023-11-05T05:48:00+00:00\",\n\t \"breadcrumb\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/#breadcrumb\"\n\t },\n\t \"inLanguage\": \"en-US\",\n\t \"potentialAction\": [\n\t {\n\t \"@type\": \"ReadAction\",\n\t \"target\": [\n\t \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/\"\n\t ]\n\t }\n\t ]\n\t },\n\t {\n\t \"@type\": \"BreadcrumbList\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/#breadcrumb\",\n\t \"itemListElement\": [\n\t {\n\t \"@type\": \"ListItem\",\n\t \"position\": 1,\n\t \"name\": \"Home\",\n\t \"item\": \"http:\/\/localhost:10003\/\"\n\t },\n\t {\n\t \"@type\": \"ListItem\",\n\t \"position\": 2,\n\t \"name\": \"How to Use NLTK for Text Analysis in Python\"\n\t }\n\t ]\n\t },\n\t {\n\t \"@type\": \"WebSite\",\n\t \"@id\": \"http:\/\/localhost:10003\/#website\",\n\t \"url\": \"http:\/\/localhost:10003\/\",\n\t \"name\": \"Pantherax Blogs\",\n\t \"description\": \"\",\n\t \"publisher\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\"\n\t },\n\t \"potentialAction\": [\n\t {\n\t \"@type\": \"SearchAction\",\n\t \"target\": {\n\t \"@type\": \"EntryPoint\",\n\t \"urlTemplate\": \"http:\/\/localhost:10003\/?s={search_term_string}\"\n\t },\n\t \"query-input\": \"required name=search_term_string\"\n\t }\n\t ],\n\t \"inLanguage\": \"en-US\"\n\t },\n\t {\n\t \"@type\": \"Organization\",\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\",\n\t \"name\": \"Pantherax Blogs\",\n\t \"url\": \"http:\/\/localhost:10003\/\",\n\t \"logo\": {\n\t \"@type\": \"ImageObject\",\n\t \"inLanguage\": \"en-US\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/logo\/image\/\",\n\t \"url\": \"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg\",\n\t \"contentUrl\": \"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg\",\n\t \"width\": 1024,\n\t \"height\": 1024,\n\t \"caption\": \"Pantherax Blogs\"\n\t },\n\t \"image\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/logo\/image\/\"\n\t }\n\t },\n\t {\n\t \"@type\": \"Person\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7\",\n\t \"name\": \"Panther\",\n\t \"image\": {\n\t \"@type\": \"ImageObject\",\n\t \"inLanguage\": \"en-US\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/image\/\",\n\t \"url\": \"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g\",\n\t \"contentUrl\": \"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g\",\n\t \"caption\": \"Panther\"\n\t },\n\t \"sameAs\": [\n\t \"http:\/\/localhost:10003\"\n\t ],\n\t \"url\": \"http:\/\/localhost:10003\/author\/pepethefrog\/\"\n\t }\n\t ]\n\t}<\/script>\n<!-- \/ Yoast SEO Premium plugin. -->","yoast_head_json":{"title":"How to Use NLTK for Text Analysis in Python - Pantherax Blogs","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/","og_locale":"en_US","og_type":"article","og_title":"How to Use NLTK for Text Analysis in Python","og_description":"Text analysis is the process of extracting meaningful information from a given text. It involves tasks such as tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. Natural Language Toolkit (NLTK) is a powerful library in Python that provides various tools and resources for text analysis. In this tutorial, Continue Reading","og_url":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/","og_site_name":"Pantherax Blogs","article_published_time":"2023-11-04T23:14:04+00:00","article_modified_time":"2023-11-05T05:48:00+00:00","author":"Panther","twitter_card":"summary_large_image","twitter_misc":{"Written by":"Panther","Est. reading time":"7 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/#article","isPartOf":{"@id":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/"},"author":{"name":"Panther","@id":"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7"},"headline":"How to Use NLTK for Text Analysis in Python","datePublished":"2023-11-04T23:14:04+00:00","dateModified":"2023-11-05T05:48:00+00:00","mainEntityOfPage":{"@id":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/"},"wordCount":835,"publisher":{"@id":"http:\/\/localhost:10003\/#organization"},"keywords":["\"Data analysis\"","\"lemmatization\"]","\"Machine Learning\"","\"Natural Language Processing\"","\"NLP\"","\"part-of-speech tagging\"","\"Python\"","\"sentiment analysis\"","\"stemming\"","\"text analysis\"","\"text mining\"","\"text processing\"","\"tokenization\"","[\"NLTK\""],"inLanguage":"en-US"},{"@type":"WebPage","@id":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/","url":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/","name":"How to Use NLTK for Text Analysis in Python - Pantherax Blogs","isPartOf":{"@id":"http:\/\/localhost:10003\/#website"},"datePublished":"2023-11-04T23:14:04+00:00","dateModified":"2023-11-05T05:48:00+00:00","breadcrumb":{"@id":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/"]}]},{"@type":"BreadcrumbList","@id":"http:\/\/localhost:10003\/how-to-use-nltk-for-text-analysis-in-python\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"http:\/\/localhost:10003\/"},{"@type":"ListItem","position":2,"name":"How to Use NLTK for Text Analysis in Python"}]},{"@type":"WebSite","@id":"http:\/\/localhost:10003\/#website","url":"http:\/\/localhost:10003\/","name":"Pantherax Blogs","description":"","publisher":{"@id":"http:\/\/localhost:10003\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"http:\/\/localhost:10003\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"http:\/\/localhost:10003\/#organization","name":"Pantherax Blogs","url":"http:\/\/localhost:10003\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"http:\/\/localhost:10003\/#\/schema\/logo\/image\/","url":"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg","contentUrl":"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg","width":1024,"height":1024,"caption":"Pantherax Blogs"},"image":{"@id":"http:\/\/localhost:10003\/#\/schema\/logo\/image\/"}},{"@type":"Person","@id":"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7","name":"Panther","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"http:\/\/localhost:10003\/#\/schema\/person\/image\/","url":"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g","contentUrl":"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g","caption":"Panther"},"sameAs":["http:\/\/localhost:10003"],"url":"http:\/\/localhost:10003\/author\/pepethefrog\/"}]}},"jetpack_sharing_enabled":true,"jetpack_featured_media_url":"","_links":{"self":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/4129"}],"collection":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/comments?post=4129"}],"version-history":[{"count":1,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/4129\/revisions"}],"predecessor-version":[{"id":4425,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/4129\/revisions\/4425"}],"wp:attachment":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/media?parent=4129"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/categories?post=4129"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/tags?post=4129"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}