{"id":4117,"date":"2023-11-04T23:14:04","date_gmt":"2023-11-04T23:14:04","guid":{"rendered":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/"},"modified":"2023-11-05T05:47:59","modified_gmt":"2023-11-05T05:47:59","slug":"how-to-build-a-question-answering-system-with-openai-gpt-3-and-python","status":"publish","type":"post","link":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/","title":{"rendered":"How to Build a Question Answering System with OpenAI GPT-3 and Python"},"content":{"rendered":"

In this tutorial, we will learn how to build a question answering system using OpenAI GPT-3 and Python. OpenAI GPT-3 is a powerful language model that can generate human-like text and answer questions based on the given context.<\/p>\n

To build the question answering system, we will use the OpenAI Python library, which provides easy access to the GPT-3 API. We will write a Python script that takes a context and a question as input and outputs the answer using GPT-3.<\/p>\n

Here are the steps we will follow in this tutorial:
\n1. Set up OpenAI GPT-3
\n2. Understand the GPT-3 API
\n3. Create the Python script
\n4. Test the question answering system<\/p>\n

Let’s get started!<\/p>\n

Step 1: Set up OpenAI GPT-3<\/h2>\n

Before we can use GPT-3, we need to set up an OpenAI account and obtain an API key. Follow these steps to set up GPT-3:<\/p>\n

    \n
  1. Go to the OpenAI website (https:\/\/openai.com\/) and sign up for an account.<\/li>\n
  2. Once you have an account, go to the OpenAI API page (https:\/\/platform.openai.com\/signup) and join the waitlist for GPT-3 access.<\/li>\n
  3. Once you have access, create an API key on the API settings page.<\/li>\n<\/ol>\n

    Now that we have an API key, we can move on to the next step.<\/p>\n

    Step 2: Understand the GPT-3 API<\/h2>\n

    The GPT-3 API allows us to interact with the GPT-3 language model. It provides various endpoints for different types of tasks, including question answering. To understand how the API works, let’s look at an example API call:<\/p>\n

    import openai\n\nopenai.ChatCompletion.create(\n  model=\"gpt-3.5-turbo\",\n  messages=[\n        {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n        {\"role\": \"user\", \"content\": \"Who won the world series in 2020?\"},\n        {\"role\": \"assistant\", \"content\": \"The Los Angeles Dodgers won the World Series in 2020.\"},\n        {\"role\": \"user\", \"content\": \"Where was it played?\"}\n    ]\n)\n<\/code><\/pre>\n

    In this example, the model<\/code> parameter specifies the version of GPT-3 we want to use. The messages<\/code> parameter is a list of role\/content pairs that represent the conversation. Each conversation consists of alternating user and assistant messages.<\/p>\n

    The API will return a response that contains the assistant’s reply to the last user message. We can extract the answer from the response and use it in our question answering system.<\/p>\n

    Step 3: Create the Python script<\/h2>\n

    Now that we understand the basics of the GPT-3 API, let’s create a Python script that interacts with the API and builds our question answering system. Follow the steps below to create the script:<\/p>\n

      \n
    1. Install the OpenAI Python library by running the following command in your command-line interface:<\/li>\n<\/ol>\n
      pip install openai\n<\/code><\/pre>\n
        \n
      1. Import the openai<\/code> module and set up your API key:<\/li>\n<\/ol>\n
        import openai\n\nopenai.api_key = \"YOUR_API_KEY\"\n<\/code><\/pre>\n
          \n
        1. Define a function that takes a context and a question as input and returns the answer using GPT-3:<\/li>\n<\/ol>\n
          def answer_question(context, question):\n    conversation = [\n        {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n        {\"role\": \"user\", \"content\": context},\n        {\"role\": \"user\", \"content\": question},\n        {\"role\": \"assistant\", \"content\": \"\"}\n    ]\n\n    response = openai.ChatCompletion.create(\n        model=\"gpt-3.5-turbo\",\n        messages=conversation\n    )\n\n    answer = response['choices'][0]['message']['content']\n    return answer\n<\/code><\/pre>\n

          In this function, we create a conversation with the given context and question. We pass the conversation to the GPT-3 API and extract the assistant’s reply as the answer.<\/p>\n

            \n
          1. Test the question answering system by calling the answer_question<\/code> function with a context and a question:<\/li>\n<\/ol>\n
            context = \"The Los Angeles Dodgers won the World Series in 2020.\"\nquestion = \"Who won the World Series in 2020?\"\n\nanswer = answer_question(context, question)\nprint(answer)\n<\/code><\/pre>\n

            When you run the script, it should output the answer to the question based on the given context.<\/p>\n

            Step 4: Test the question answering system<\/h2>\n

            Now that our question answering system is ready, let’s test it with different contexts and questions. Here are a few examples:<\/p>\n

            context = \"The capital of France is Paris.\"\nquestion = \"What is the capital of France?\"\nanswer = answer_question(context, question)\nprint(answer)\n<\/code><\/pre>\n

            This should output “Paris” as the answer.<\/p>\n

            context = \"Python is a programming language.\"\nquestion = \"What is Python?\"\nanswer = answer_question(context, question)\nprint(answer)\n<\/code><\/pre>\n

            This should output “Python is a programming language.” as the answer.<\/p>\n

            You can test the question answering system with various contexts and questions to see how it performs.<\/p>\n

            Conclusion<\/h2>\n

            In this tutorial, we have learned how to build a question answering system using OpenAI GPT-3 and Python. We set up GPT-3, understood the GPT-3 API, created a Python script, and tested the question answering system. OpenAI GPT-3 provides a powerful way to generate human-like text and answer questions based on the given context. You can further enhance the question answering system by expanding the conversation and incorporating more user messages.<\/p>\n

            Remember to keep your API key secure and avoid exposing it publicly. OpenAI offers detailed documentation on the GPT-3 API, which you can refer to for more advanced usage and options. Have fun experimenting with the GPT-3 language model and building innovative applications!<\/p>\n","protected":false},"excerpt":{"rendered":"

            In this tutorial, we will learn how to build a question answering system using OpenAI GPT-3 and Python. OpenAI GPT-3 is a powerful language model that can generate human-like text and answer questions based on the given context. To build the question answering system, we will use the OpenAI Python Continue Reading<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_import_markdown_pro_load_document_selector":0,"_import_markdown_pro_submit_text_textarea":"","footnotes":""},"categories":[1],"tags":[207,1349,230,41,40,206,116,119,75,1348],"yoast_head":"\nHow to Build a Question Answering System with OpenAI GPT-3 and Python - Pantherax Blogs<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"How to Build a Question Answering System with OpenAI GPT-3 and Python\" \/>\n<meta property=\"og:description\" content=\"In this tutorial, we will learn how to build a question answering system using OpenAI GPT-3 and Python. OpenAI GPT-3 is a powerful language model that can generate human-like text and answer questions based on the given context. To build the question answering system, we will use the OpenAI Python Continue Reading\" \/>\n<meta property=\"og:url\" content=\"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\" \/>\n<meta property=\"og:site_name\" content=\"Pantherax Blogs\" \/>\n<meta property=\"article:published_time\" content=\"2023-11-04T23:14:04+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2023-11-05T05:47:59+00:00\" \/>\n<meta name=\"author\" content=\"Panther\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"Panther\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"4 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\n\t \"@context\": \"https:\/\/schema.org\",\n\t \"@graph\": [\n\t {\n\t \"@type\": \"Article\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/#article\",\n\t \"isPartOf\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\"\n\t },\n\t \"author\": {\n\t \"name\": \"Panther\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7\"\n\t },\n\t \"headline\": \"How to Build a Question Answering System with OpenAI GPT-3 and Python\",\n\t \"datePublished\": \"2023-11-04T23:14:04+00:00\",\n\t \"dateModified\": \"2023-11-05T05:47:59+00:00\",\n\t \"mainEntityOfPage\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\"\n\t },\n\t \"wordCount\": 652,\n\t \"publisher\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\"\n\t },\n\t \"keywords\": [\n\t \"\\\"AI\\\"]\",\n\t \"\\\"build a question answering system\\\"\",\n\t \"\\\"deep learning\\\"]\",\n\t \"\\\"Machine Learning\\\"\",\n\t \"\\\"Natural Language Processing\\\"\",\n\t \"\\\"NLP\\\"\",\n\t \"\\\"OpenAI GPT-3\\\"\",\n\t \"\\\"programming\\\"\",\n\t \"\\\"Python\\\"\",\n\t \"\\\"question answering system\\\"\"\n\t ],\n\t \"inLanguage\": \"en-US\"\n\t },\n\t {\n\t \"@type\": \"WebPage\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\",\n\t \"url\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\",\n\t \"name\": \"How to Build a Question Answering System with OpenAI GPT-3 and Python - Pantherax Blogs\",\n\t \"isPartOf\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#website\"\n\t },\n\t \"datePublished\": \"2023-11-04T23:14:04+00:00\",\n\t \"dateModified\": \"2023-11-05T05:47:59+00:00\",\n\t \"breadcrumb\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/#breadcrumb\"\n\t },\n\t \"inLanguage\": \"en-US\",\n\t \"potentialAction\": [\n\t {\n\t \"@type\": \"ReadAction\",\n\t \"target\": [\n\t \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/\"\n\t ]\n\t }\n\t ]\n\t },\n\t {\n\t \"@type\": \"BreadcrumbList\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/#breadcrumb\",\n\t \"itemListElement\": [\n\t {\n\t \"@type\": \"ListItem\",\n\t \"position\": 1,\n\t \"name\": \"Home\",\n\t \"item\": \"http:\/\/localhost:10003\/\"\n\t },\n\t {\n\t \"@type\": \"ListItem\",\n\t \"position\": 2,\n\t \"name\": \"How to Build a Question Answering System with OpenAI GPT-3 and Python\"\n\t }\n\t ]\n\t },\n\t {\n\t \"@type\": \"WebSite\",\n\t \"@id\": \"http:\/\/localhost:10003\/#website\",\n\t \"url\": \"http:\/\/localhost:10003\/\",\n\t \"name\": \"Pantherax Blogs\",\n\t \"description\": \"\",\n\t \"publisher\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\"\n\t },\n\t \"potentialAction\": [\n\t {\n\t \"@type\": \"SearchAction\",\n\t \"target\": {\n\t \"@type\": \"EntryPoint\",\n\t \"urlTemplate\": \"http:\/\/localhost:10003\/?s={search_term_string}\"\n\t },\n\t \"query-input\": \"required name=search_term_string\"\n\t }\n\t ],\n\t \"inLanguage\": \"en-US\"\n\t },\n\t {\n\t \"@type\": \"Organization\",\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\",\n\t \"name\": \"Pantherax Blogs\",\n\t \"url\": \"http:\/\/localhost:10003\/\",\n\t \"logo\": {\n\t \"@type\": \"ImageObject\",\n\t \"inLanguage\": \"en-US\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/logo\/image\/\",\n\t \"url\": \"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg\",\n\t \"contentUrl\": \"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg\",\n\t \"width\": 1024,\n\t \"height\": 1024,\n\t \"caption\": \"Pantherax Blogs\"\n\t },\n\t \"image\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/logo\/image\/\"\n\t }\n\t },\n\t {\n\t \"@type\": \"Person\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7\",\n\t \"name\": \"Panther\",\n\t \"image\": {\n\t \"@type\": \"ImageObject\",\n\t \"inLanguage\": \"en-US\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/image\/\",\n\t \"url\": \"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g\",\n\t \"contentUrl\": \"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g\",\n\t \"caption\": \"Panther\"\n\t },\n\t \"sameAs\": [\n\t \"http:\/\/localhost:10003\"\n\t ],\n\t \"url\": \"http:\/\/localhost:10003\/author\/pepethefrog\/\"\n\t }\n\t ]\n\t}<\/script>\n<!-- \/ Yoast SEO Premium plugin. -->","yoast_head_json":{"title":"How to Build a Question Answering System with OpenAI GPT-3 and Python - Pantherax Blogs","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/","og_locale":"en_US","og_type":"article","og_title":"How to Build a Question Answering System with OpenAI GPT-3 and Python","og_description":"In this tutorial, we will learn how to build a question answering system using OpenAI GPT-3 and Python. OpenAI GPT-3 is a powerful language model that can generate human-like text and answer questions based on the given context. To build the question answering system, we will use the OpenAI Python Continue Reading","og_url":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/","og_site_name":"Pantherax Blogs","article_published_time":"2023-11-04T23:14:04+00:00","article_modified_time":"2023-11-05T05:47:59+00:00","author":"Panther","twitter_card":"summary_large_image","twitter_misc":{"Written by":"Panther","Est. reading time":"4 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/#article","isPartOf":{"@id":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/"},"author":{"name":"Panther","@id":"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7"},"headline":"How to Build a Question Answering System with OpenAI GPT-3 and Python","datePublished":"2023-11-04T23:14:04+00:00","dateModified":"2023-11-05T05:47:59+00:00","mainEntityOfPage":{"@id":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/"},"wordCount":652,"publisher":{"@id":"http:\/\/localhost:10003\/#organization"},"keywords":["\"AI\"]","\"build a question answering system\"","\"deep learning\"]","\"Machine Learning\"","\"Natural Language Processing\"","\"NLP\"","\"OpenAI GPT-3\"","\"programming\"","\"Python\"","\"question answering system\""],"inLanguage":"en-US"},{"@type":"WebPage","@id":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/","url":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/","name":"How to Build a Question Answering System with OpenAI GPT-3 and Python - Pantherax Blogs","isPartOf":{"@id":"http:\/\/localhost:10003\/#website"},"datePublished":"2023-11-04T23:14:04+00:00","dateModified":"2023-11-05T05:47:59+00:00","breadcrumb":{"@id":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/"]}]},{"@type":"BreadcrumbList","@id":"http:\/\/localhost:10003\/how-to-build-a-question-answering-system-with-openai-gpt-3-and-python\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"http:\/\/localhost:10003\/"},{"@type":"ListItem","position":2,"name":"How to Build a Question Answering System with OpenAI GPT-3 and Python"}]},{"@type":"WebSite","@id":"http:\/\/localhost:10003\/#website","url":"http:\/\/localhost:10003\/","name":"Pantherax Blogs","description":"","publisher":{"@id":"http:\/\/localhost:10003\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"http:\/\/localhost:10003\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"http:\/\/localhost:10003\/#organization","name":"Pantherax Blogs","url":"http:\/\/localhost:10003\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"http:\/\/localhost:10003\/#\/schema\/logo\/image\/","url":"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg","contentUrl":"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg","width":1024,"height":1024,"caption":"Pantherax Blogs"},"image":{"@id":"http:\/\/localhost:10003\/#\/schema\/logo\/image\/"}},{"@type":"Person","@id":"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7","name":"Panther","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"http:\/\/localhost:10003\/#\/schema\/person\/image\/","url":"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g","contentUrl":"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g","caption":"Panther"},"sameAs":["http:\/\/localhost:10003"],"url":"http:\/\/localhost:10003\/author\/pepethefrog\/"}]}},"jetpack_sharing_enabled":true,"jetpack_featured_media_url":"","_links":{"self":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/4117"}],"collection":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/comments?post=4117"}],"version-history":[{"count":1,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/4117\/revisions"}],"predecessor-version":[{"id":4413,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/4117\/revisions\/4413"}],"wp:attachment":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/media?parent=4117"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/categories?post=4117"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/tags?post=4117"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}