{"id":4115,"date":"2023-11-04T23:14:04","date_gmt":"2023-11-04T23:14:04","guid":{"rendered":"http:\/\/localhost:10003\/how-to-build-a-text-to-image-app-with-openai-gpt-3-and-google-cloud-api\/"},"modified":"2023-11-05T05:47:59","modified_gmt":"2023-11-05T05:47:59","slug":"how-to-build-a-text-to-image-app-with-openai-gpt-3-and-google-cloud-api","status":"publish","type":"post","link":"http:\/\/localhost:10003\/how-to-build-a-text-to-image-app-with-openai-gpt-3-and-google-cloud-api\/","title":{"rendered":"How to Build a Text-to-Image App with OpenAI GPT-3 and Google Cloud API"},"content":{"rendered":"
In this tutorial, we will walk through the process of building a text-to-image application using the power of OpenAI GPT-3 and the Google Cloud Vision API. With GPT-3, we can generate human-like text descriptions of images, and with the Google Cloud API, we can turn those text descriptions into actual images.<\/p>\n
To follow along with this tutorial, you will need:<\/p>\n
First, let’s set up our OpenAI GPT-3 API.<\/p>\n
pip install openai<\/code> in your terminal.<\/li>\n<\/ol>\nStep 2: Set Up Google Cloud Vision API<\/h2>\n
Next, let’s set up the Google Cloud Vision API.<\/p>\n
\n- Sign in to the Google Cloud Console and create a new project.<\/li>\n
- Enable the Cloud Vision API for your project by following the instructions provided by Google.<\/li>\n
- After enabling the API, go to the credentials tab and create a new API key for your project.<\/li>\n<\/ol>\n
Make sure you have the Google Cloud Python library installed by running pip install google-cloud-vision<\/code> in your terminal.<\/p>\nStep 3: Set Up the Python Environment<\/h2>\n
In this step, we will set up the Python environment and install the necessary Python packages.<\/p>\n
\n- Create a new directory for your project and navigate to it in your terminal.<\/li>\n
- Create a new virtual environment by running
python -m venv .venv<\/code>.<\/li>\n- Activate the virtual environment by running
. .venv\/bin\/activate<\/code> on macOS or Linux, or .venvScriptsactivate.bat<\/code> on Windows.<\/li>\n- Install the required Python packages by running
pip install flask openai google-cloud-vision pillow<\/code> in your terminal.<\/li>\n<\/ol>\nStep 4: Build the Text-to-Image App with Flask<\/h2>\n
Now let’s start building our text-to-image application using Flask.<\/p>\n
\n- Create a new file called
app.py<\/code> in your project directory.<\/li>\n- Open
app.py<\/code> in your favorite text editor and import the necessary modules:<\/li>\n<\/ol>\nfrom flask import Flask, render_template, request, redirect\nfrom google.cloud import vision\nimport requests\nimport base64\nimport io\nimport openai\nfrom PIL import Image\n<\/code><\/pre>\n\n- Initialize the Flask app:<\/li>\n<\/ol>\n
app = Flask(__name__)\n<\/code><\/pre>\n\n- Add the API keys:<\/li>\n<\/ol>\n
# GPT-3 API key\nopenai.api_key = 'YOUR_OPENAI_API_KEY'\n\n# Google Cloud Vision API key\nvision_client = vision.ImageAnnotatorClient.from_service_account_file('YOUR_GOOGLE_CLOUD_API_KEY.json')\n<\/code><\/pre>\n\n- Define the main route for the web application:<\/li>\n<\/ol>\n
@app.route('\/')\ndef index():\n return render_template('index.html')\n<\/code><\/pre>\n\n- Create a new route to handle the form submission:<\/li>\n<\/ol>\n
@app.route('\/submit', methods=['POST'])\ndef submit():\n # Get the input text from the form\n text = request.form['text']\n\n # Generate the image description using GPT-3\n response = openai.Completion.create(\n engine='davinci',\n prompt=text + \"Generate an image that matches the description:\",\n max_tokens=50,\n n=1,\n stop=None,\n temperature=0.8\n )\n\n # Get the generated image description\n image_description = response.choices[0].text.strip()\n\n # Create an image from the generated description using Google Cloud Vision API\n image = create_image(image_description)\n\n # Save the image to a file\n image.save('static\/image.png')\n\n return redirect('\/result')\n<\/code><\/pre>\n\n- Next, implement the
create_image()<\/code> function:<\/li>\n<\/ol>\ndef create_image(description):\n # Create an image from the description using Google Cloud Vision API\n image = vision_client.image_annotator\n\n # Generate an image request\n request = {\n 'image': {\n 'source': {\n 'image_uri': 'https:\/\/source.unsplash.com\/800x600\/?' + '+'.join(description.split())\n },\n },\n 'features': [\n {'type': vision.Feature.Type.LABEL_DETECTION},\n ],\n }\n\n # Perform the request\n response = image.annotate_image(request)\n\n # Get the image data\n image_data = response.image.download()\n\n # Convert the image data to a PIL image\n pil_image = Image.open(io.BytesIO(image_data))\n return pil_image\n<\/code><\/pre>\n\n- Create a new route to display the result:<\/li>\n<\/ol>\n
@app.route('\/result')\ndef result():\n return render_template('result.html')\n<\/code><\/pre>\n\n- Finally, create the necessary HTML templates. Create a file called
index.html<\/code> in the templates<\/code> directory, and add the following code:<\/li>\n<\/ol>\n<!DOCTYPE html>\n<html>\n<head>\n <title>Text-to-Image App<\/title>\n<\/head>\n<body>\n <h1>Text-to-Image App<\/h1>\n <form action=\"\/submit\" method=\"POST\">\n <label for=\"text\">Enter a description:<\/label><br>\n <input type=\"text\" id=\"text\" name=\"text\"><br>\n <input type=\"submit\" value=\"Generate Image\">\n <\/form>\n<\/body>\n<\/html>\n<\/code><\/pre>\n\n- Create another file called
result.html<\/code> in the templates<\/code> directory, and add the following code:<\/li>\n<\/ol>\n<!DOCTYPE html>\n<html>\n<head>\n <title>Text-to-Image App<\/title>\n<\/head>\n<body>\n <h1>Generated Image:<\/h1>\n <img src=\"\/static\/image.png\" alt=\"Generated Image\">\n<\/body>\n<\/html>\n<\/code><\/pre>\nStep 5: Run the Text-to-Image App<\/h2>\n
Now that we’ve built the application, let’s run it locally.<\/p>\n
\n- In your terminal, make sure you are in the project directory and have activated the virtual environment.<\/li>\n
- Run the Flask app by executing the following command:
flask run<\/code>.<\/li>\n- Open your web browser and navigate to `http:\/\/localhost:5000`.<\/li>\n
- Enter a description in the form and click the “Generate Image” button.<\/li>\n
- Wait for the app to generate the image and redirect you to the result page.<\/li>\n
- The generated image will be displayed on the result page.<\/li>\n<\/ol>\n
Congratulations! You have successfully built a text-to-image application using OpenAI GPT-3 and the Google Cloud Vision API.<\/p>\n
Conclusion<\/h2>\n
In this tutorial, we have learned how to use the power of OpenAI GPT-3 and the Google Cloud Vision API to build a text-to-image application. We explored the process of generating image descriptions using GPT-3 and converting those descriptions into actual images using the Google Cloud Vision API. With this knowledge, you can build your own image generation applications and explore the possibilities of AI-powered image generation.<\/p>\n","protected":false},"excerpt":{"rendered":"
In this tutorial, we will walk through the process of building a text-to-image application using the power of OpenAI GPT-3 and the Google Cloud Vision API. With GPT-3, we can generate human-like text descriptions of images, and with the Google Cloud API, we can turn those text descriptions into actual Continue Reading<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_import_markdown_pro_load_document_selector":0,"_import_markdown_pro_submit_text_textarea":"","footnotes":""},"categories":[1],"tags":[10,39,1313,41,116,1342],"yoast_head":"\nHow to Build a Text-to-Image App with OpenAI GPT-3 and Google Cloud API - Pantherax Blogs<\/title>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\t\n\t\n\t\n