{"id":3917,"date":"2023-11-04T23:13:56","date_gmt":"2023-11-04T23:13:56","guid":{"rendered":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/"},"modified":"2023-11-05T05:48:27","modified_gmt":"2023-11-05T05:48:27","slug":"how-to-create-a-face-mask-detection-app-with-python-and-tensorflow","status":"publish","type":"post","link":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/","title":{"rendered":"How to Create a Face Mask Detection App with Python and TensorFlow"},"content":{"rendered":"

In recent times, face mask detection has become crucial for maintaining public health and safety. By leveraging machine learning and computer vision techniques, we can now build face mask detection apps that can easily identify individuals wearing masks and those who aren’t.<\/p>\n

In this tutorial, we will walk through the process of creating a face mask detection app using Python and TensorFlow. We will train a deep learning model to detect face masks in images, and then build a user-friendly app that can detect masks in real-time using a webcam. Let’s get started!<\/p>\n

Table of Contents<\/h2>\n
    \n
  1. Prerequisites<\/li>\n
  2. Setting up the Environment<\/li>\n
  3. Data Collection and Preprocessing<\/li>\n
  4. Training the Face Mask Detection Model<\/li>\n
  5. Building the Face Mask Detection App<\/li>\n
  6. Conclusion<\/li>\n<\/ol>\n

    1. Prerequisites<\/h2>\n

    Before we begin, make sure you have the following prerequisites installed on your system:
    \n– Python 3
    \n– TensorFlow
    \n– OpenCV
    \n– NumPy
    \n– Matplotlib<\/p>\n

    You can install these packages using pip, the Python package manager. Open your terminal and run the following command to install all the dependencies:<\/p>\n

    pip install tensorflow opencv-python numpy matplotlib\n<\/code><\/pre>\n

    2. Setting up the Environment<\/h2>\n

    To get started, let’s create a new directory for our project. Open your terminal and run the following command to create the directory:<\/p>\n

    mkdir face_mask_detection_app\ncd face_mask_detection_app\n<\/code><\/pre>\n

    Inside this directory, we will store all our project files.<\/p>\n

    3. Data Collection and Preprocessing<\/h2>\n

    The first step in building a face mask detection app is to collect and preprocess the data. We need two sets of images: one containing individuals wearing face masks, and the other without face masks.<\/p>\n

    You can collect your own dataset or use publicly available datasets. Some popular face mask datasets include:
    \n– The Face Mask Detection Dataset by Prajna Bhandary<\/a>
    \n–
    The Medical Masks Dataset by Anthem<\/a>
    \n–
    The Face Mask Detection Dataset by Wobot Intelligence<\/a><\/p>\n

    Once you have downloaded the dataset, create two subdirectories inside your project directory: with_mask<\/code> and without_mask<\/code>. Place the corresponding images into these directories.<\/p>\n

    Next, we need to preprocess the data by resizing the images to a fixed size. Open your code editor and create a new Python file called data_preprocessing.py<\/code> inside the project directory. Write the following code:<\/p>\n

    import os\nimport cv2\n\n# Specify the directories containing the images\nwith_mask_dir = \"with_mask\/\"\nwithout_mask_dir = \"without_mask\/\"\n\n# Specify the directory to store the preprocessed images\noutput_dir = \"preprocessed_data\/\"\n\n# Create the output directory if it doesn't exist\nos.makedirs(output_dir, exist_ok=True)\n\n# Rescale the image to a fixed size of 224x224 pixels\ndef preprocess_image(image_path):\n    image = cv2.imread(image_path)\n    image = cv2.resize(image, (224, 224))\n    return image\n\n# Preprocess the images with face masks\nwith_mask_images = os.listdir(with_mask_dir)\nfor image_name in with_mask_images:\n    image_path = os.path.join(with_mask_dir, image_name)\n    output_path = os.path.join(output_dir, \"with_mask_\" + image_name)\n    preprocessed_image = preprocess_image(image_path)\n    cv2.imwrite(output_path, preprocessed_image)\n\n# Preprocess the images without face masks\nwithout_mask_images = os.listdir(without_mask_dir)\nfor image_name in without_mask_images:\n    image_path = os.path.join(without_mask_dir, image_name)\n    output_path = os.path.join(output_dir, \"without_mask_\" + image_name)\n    preprocessed_image = preprocess_image(image_path)\n    cv2.imwrite(output_path, preprocessed_image)\n<\/code><\/pre>\n

    Save the file and run it by executing the following command in your terminal:<\/p>\n

    python data_preprocessing.py\n<\/code><\/pre>\n

    This script will preprocess the images by resizing them to a fixed size of 224×224 pixels and save them in the preprocessed_data<\/code> directory.<\/p>\n

    4. Training the Face Mask Detection Model<\/h2>\n

    Now that we have preprocessed the data, let’s train a deep learning model to detect face masks in images. For this tutorial, we will use transfer learning with the MobileNetV2 architecture, which is a popular choice for image classification tasks.<\/p>\n

    Open your code editor and create a new Python file called train_model.py<\/code> inside the project directory. Write the following code:<\/p>\n

    import os\nimport tensorflow as tf\nfrom tensorflow.keras.applications import MobileNetV2\nfrom tensorflow.keras.models import Model\nfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2D\n\n# Specify the directories containing the preprocessed images\ntrain_data_dir = \"preprocessed_data\/\"\n\n# Load the MobileNetV2 model\nbase_model = MobileNetV2(weights=\"imagenet\", include_top=False, input_shape=(224, 224, 3))\n\n# Add custom output layers for face mask detection\nx = base_model.output\nx = GlobalAveragePooling2D()(x)\nx = Dense(64, activation=\"relu\")(x)\npredictions = Dense(1, activation=\"sigmoid\")(x)\nmodel = Model(inputs=base_model.input, outputs=predictions)\n\n# Freeze the base model layers\nfor layer in base_model.layers:\n    layer.trainable = False\n\n# Compile the model\nmodel.compile(optimizer=\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n\n# Load the preprocessed images\nimage_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.\/255)\ndata_generator = image_generator.flow_from_directory(\n    train_data_dir,\n    target_size=(224, 224),\n    batch_size=32,\n    class_mode=\"binary\"\n)\n\n# Train the model\nmodel.fit(data_generator, epochs=10)\n\n# Save the trained model\nmodel.save(\"face_mask_detection_model.h5\")\n<\/code><\/pre>\n

    Save the file and run it by executing the following command in your terminal:<\/p>\n

    python train_model.py\n<\/code><\/pre>\n

    This script will load the preprocessed images, build a model architecture using transfer learning, train the model on the images, and save the trained model to a file called face_mask_detection_model.h5<\/code>.<\/p>\n

    5. Building the Face Mask Detection App<\/h2>\n

    Now that we have a trained model to detect face masks, let’s create an app to put it into action. We will build a simple GUI application that uses a webcam to detect face masks in real-time.<\/p>\n

    Open your code editor and create a new Python file called face_mask_detection_app.py<\/code> inside the project directory. Write the following code:<\/p>\n

    import cv2\nimport tensorflow as tf\n\n# Load the trained model\nmodel = tf.keras.models.load_model(\"face_mask_detection_model.h5\")\n\n# Initialize the video capture object\ncapture = cv2.VideoCapture(0)\n\n# Open a window to display the output\ncv2.namedWindow(\"Face Mask Detection\")\n\n# Define the colors for drawing bounding boxes\nwith_mask_color = (0, 255, 0)       # Green\nwithout_mask_color = (0, 0, 255)    # Red\n\n# Start the video capture loop\nwhile True:\n    # Read a frame from the video stream\n    ret, frame = capture.read()\n\n    # Check if the frame is valid\n    if not ret:\n        break\n\n    # Convert the frame to grayscale\n    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n\n    # Perform face detection\n    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + \"haarcascade_frontalface_default.xml\")\n    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(60, 60))\n\n    # Iterate over the detected faces\n    for (x, y, w, h) in faces:\n        # Preprocess the face image\n        face = frame[y:y+h, x:x+w]\n        face = cv2.resize(face, (224, 224))\n        face = tf.keras.preprocessing.image.img_to_array(face)\n        face = tf.expand_dims(face, axis=0)\n        face = face \/ 255.0\n\n        # Perform face mask detection\n        result = model.predict(face)[0][0]\n        if result < 0.5:\n            label = \"With Mask\"\n            color = with_mask_color\n        else:\n            label = \"Without Mask\"\n            color = without_mask_color\n\n        # Draw a bounding box around the face and display the label\n        cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2)\n        cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)\n\n    # Display the frame with the detections\n    cv2.imshow(\"Face Mask Detection\", frame)\n\n    # Break the loop on \"q\" key press\n    if cv2.waitKey(1) & 0xFF == ord(\"q\"):\n        break\n\n# Release the video capture object and close the windows\ncapture.release()\ncv2.destroyAllWindows()\n<\/code><\/pre>\n

    Save the file and run it by executing the following command in your terminal:<\/p>\n

    python face_mask_detection_app.py\n<\/code><\/pre>\n

    This script will load the trained model, initialize the video capture object for the webcam, detect faces in real-time, perform face mask detection on each frame, draw bounding boxes around the faces, and display the result in a window.<\/p>\n

    6. Conclusion<\/h2>\n

    Congratulations! You have successfully created a face mask detection app using Python and TensorFlow. You have learned how to collect and preprocess the data, train a deep learning model using transfer learning, and build a user-friendly app to detect face masks in real-time.<\/p>\n

    Feel free to explore further by improving the app’s performance, deploying it as a web application, or even integrating it with other technologies. The possibilities are endless!<\/p>\n

    Remember, face mask detection is just one application of computer vision. You can apply similar techniques to solve various other real-world problems. Keep exploring and happy coding!<\/p>\n","protected":false},"excerpt":{"rendered":"

    In recent times, face mask detection has become crucial for maintaining public health and safety. By leveraging machine learning and computer vision techniques, we can now build face mask detection apps that can easily identify individuals wearing masks and those who aren’t. In this tutorial, we will walk through the Continue Reading<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_import_markdown_pro_load_document_selector":0,"_import_markdown_pro_submit_text_textarea":"","footnotes":""},"categories":[1],"tags":[39,229,327,193,325,230,326,41,249,328,323,324,75,322,321],"yoast_head":"\nHow to Create a Face Mask Detection App with Python and TensorFlow - Pantherax Blogs<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"How to Create a Face Mask Detection App with Python and TensorFlow\" \/>\n<meta property=\"og:description\" content=\"In recent times, face mask detection has become crucial for maintaining public health and safety. By leveraging machine learning and computer vision techniques, we can now build face mask detection apps that can easily identify individuals wearing masks and those who aren’t. In this tutorial, we will walk through the Continue Reading\" \/>\n<meta property=\"og:url\" content=\"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\" \/>\n<meta property=\"og:site_name\" content=\"Pantherax Blogs\" \/>\n<meta property=\"article:published_time\" content=\"2023-11-04T23:13:56+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2023-11-05T05:48:27+00:00\" \/>\n<meta name=\"author\" content=\"Panther\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"Panther\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"7 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\n\t \"@context\": \"https:\/\/schema.org\",\n\t \"@graph\": [\n\t {\n\t \"@type\": \"Article\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/#article\",\n\t \"isPartOf\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\"\n\t },\n\t \"author\": {\n\t \"name\": \"Panther\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7\"\n\t },\n\t \"headline\": \"How to Create a Face Mask Detection App with Python and TensorFlow\",\n\t \"datePublished\": \"2023-11-04T23:13:56+00:00\",\n\t \"dateModified\": \"2023-11-05T05:48:27+00:00\",\n\t \"mainEntityOfPage\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\"\n\t },\n\t \"wordCount\": 715,\n\t \"publisher\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\"\n\t },\n\t \"keywords\": [\n\t \"\\\"Artificial Intelligence\\\"\",\n\t \"\\\"computer vision\\\"\",\n\t \"\\\"Convolutional Neural Networks\\\"\",\n\t \"\\\"Data analysis\\\"\",\n\t \"\\\"Data Science\\\"\",\n\t \"\\\"deep learning\\\"]\",\n\t \"\\\"Image Processing\\\"\",\n\t \"\\\"Machine Learning\\\"\",\n\t \"\\\"model training\\\"\",\n\t \"\\\"Neural Networks\\\"\",\n\t \"\\\"Object Detection\\\"\",\n\t \"\\\"OpenCV\\\"\",\n\t \"\\\"Python\\\"\",\n\t \"\\\"TensorFlow\\\"\",\n\t \"[\\\"Face Mask Detection App\\\"\"\n\t ],\n\t \"inLanguage\": \"en-US\"\n\t },\n\t {\n\t \"@type\": \"WebPage\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\",\n\t \"url\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\",\n\t \"name\": \"How to Create a Face Mask Detection App with Python and TensorFlow - Pantherax Blogs\",\n\t \"isPartOf\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#website\"\n\t },\n\t \"datePublished\": \"2023-11-04T23:13:56+00:00\",\n\t \"dateModified\": \"2023-11-05T05:48:27+00:00\",\n\t \"breadcrumb\": {\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/#breadcrumb\"\n\t },\n\t \"inLanguage\": \"en-US\",\n\t \"potentialAction\": [\n\t {\n\t \"@type\": \"ReadAction\",\n\t \"target\": [\n\t \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/\"\n\t ]\n\t }\n\t ]\n\t },\n\t {\n\t \"@type\": \"BreadcrumbList\",\n\t \"@id\": \"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/#breadcrumb\",\n\t \"itemListElement\": [\n\t {\n\t \"@type\": \"ListItem\",\n\t \"position\": 1,\n\t \"name\": \"Home\",\n\t \"item\": \"http:\/\/localhost:10003\/\"\n\t },\n\t {\n\t \"@type\": \"ListItem\",\n\t \"position\": 2,\n\t \"name\": \"How to Create a Face Mask Detection App with Python and TensorFlow\"\n\t }\n\t ]\n\t },\n\t {\n\t \"@type\": \"WebSite\",\n\t \"@id\": \"http:\/\/localhost:10003\/#website\",\n\t \"url\": \"http:\/\/localhost:10003\/\",\n\t \"name\": \"Pantherax Blogs\",\n\t \"description\": \"\",\n\t \"publisher\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\"\n\t },\n\t \"potentialAction\": [\n\t {\n\t \"@type\": \"SearchAction\",\n\t \"target\": {\n\t \"@type\": \"EntryPoint\",\n\t \"urlTemplate\": \"http:\/\/localhost:10003\/?s={search_term_string}\"\n\t },\n\t \"query-input\": \"required name=search_term_string\"\n\t }\n\t ],\n\t \"inLanguage\": \"en-US\"\n\t },\n\t {\n\t \"@type\": \"Organization\",\n\t \"@id\": \"http:\/\/localhost:10003\/#organization\",\n\t \"name\": \"Pantherax Blogs\",\n\t \"url\": \"http:\/\/localhost:10003\/\",\n\t \"logo\": {\n\t \"@type\": \"ImageObject\",\n\t \"inLanguage\": \"en-US\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/logo\/image\/\",\n\t \"url\": \"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg\",\n\t \"contentUrl\": \"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg\",\n\t \"width\": 1024,\n\t \"height\": 1024,\n\t \"caption\": \"Pantherax Blogs\"\n\t },\n\t \"image\": {\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/logo\/image\/\"\n\t }\n\t },\n\t {\n\t \"@type\": \"Person\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7\",\n\t \"name\": \"Panther\",\n\t \"image\": {\n\t \"@type\": \"ImageObject\",\n\t \"inLanguage\": \"en-US\",\n\t \"@id\": \"http:\/\/localhost:10003\/#\/schema\/person\/image\/\",\n\t \"url\": \"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g\",\n\t \"contentUrl\": \"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g\",\n\t \"caption\": \"Panther\"\n\t },\n\t \"sameAs\": [\n\t \"http:\/\/localhost:10003\"\n\t ],\n\t \"url\": \"http:\/\/localhost:10003\/author\/pepethefrog\/\"\n\t }\n\t ]\n\t}<\/script>\n<!-- \/ Yoast SEO Premium plugin. -->","yoast_head_json":{"title":"How to Create a Face Mask Detection App with Python and TensorFlow - Pantherax Blogs","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/","og_locale":"en_US","og_type":"article","og_title":"How to Create a Face Mask Detection App with Python and TensorFlow","og_description":"In recent times, face mask detection has become crucial for maintaining public health and safety. By leveraging machine learning and computer vision techniques, we can now build face mask detection apps that can easily identify individuals wearing masks and those who aren’t. In this tutorial, we will walk through the Continue Reading","og_url":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/","og_site_name":"Pantherax Blogs","article_published_time":"2023-11-04T23:13:56+00:00","article_modified_time":"2023-11-05T05:48:27+00:00","author":"Panther","twitter_card":"summary_large_image","twitter_misc":{"Written by":"Panther","Est. reading time":"7 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/#article","isPartOf":{"@id":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/"},"author":{"name":"Panther","@id":"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7"},"headline":"How to Create a Face Mask Detection App with Python and TensorFlow","datePublished":"2023-11-04T23:13:56+00:00","dateModified":"2023-11-05T05:48:27+00:00","mainEntityOfPage":{"@id":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/"},"wordCount":715,"publisher":{"@id":"http:\/\/localhost:10003\/#organization"},"keywords":["\"Artificial Intelligence\"","\"computer vision\"","\"Convolutional Neural Networks\"","\"Data analysis\"","\"Data Science\"","\"deep learning\"]","\"Image Processing\"","\"Machine Learning\"","\"model training\"","\"Neural Networks\"","\"Object Detection\"","\"OpenCV\"","\"Python\"","\"TensorFlow\"","[\"Face Mask Detection App\""],"inLanguage":"en-US"},{"@type":"WebPage","@id":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/","url":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/","name":"How to Create a Face Mask Detection App with Python and TensorFlow - Pantherax Blogs","isPartOf":{"@id":"http:\/\/localhost:10003\/#website"},"datePublished":"2023-11-04T23:13:56+00:00","dateModified":"2023-11-05T05:48:27+00:00","breadcrumb":{"@id":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/"]}]},{"@type":"BreadcrumbList","@id":"http:\/\/localhost:10003\/how-to-create-a-face-mask-detection-app-with-python-and-tensorflow\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"http:\/\/localhost:10003\/"},{"@type":"ListItem","position":2,"name":"How to Create a Face Mask Detection App with Python and TensorFlow"}]},{"@type":"WebSite","@id":"http:\/\/localhost:10003\/#website","url":"http:\/\/localhost:10003\/","name":"Pantherax Blogs","description":"","publisher":{"@id":"http:\/\/localhost:10003\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"http:\/\/localhost:10003\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"http:\/\/localhost:10003\/#organization","name":"Pantherax Blogs","url":"http:\/\/localhost:10003\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"http:\/\/localhost:10003\/#\/schema\/logo\/image\/","url":"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg","contentUrl":"http:\/\/localhost:10003\/wp-content\/uploads\/2023\/11\/cropped-9e7721cb-2d62-4f72-ab7f-7d1d8db89226.jpeg","width":1024,"height":1024,"caption":"Pantherax Blogs"},"image":{"@id":"http:\/\/localhost:10003\/#\/schema\/logo\/image\/"}},{"@type":"Person","@id":"http:\/\/localhost:10003\/#\/schema\/person\/b63d816f4964b163e53cbbcffaa0f3d7","name":"Panther","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"http:\/\/localhost:10003\/#\/schema\/person\/image\/","url":"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g","contentUrl":"http:\/\/2.gravatar.com\/avatar\/b8c0eda5a49f8f31ec32d0a0f9d6f838?s=96&d=mm&r=g","caption":"Panther"},"sameAs":["http:\/\/localhost:10003"],"url":"http:\/\/localhost:10003\/author\/pepethefrog\/"}]}},"jetpack_sharing_enabled":true,"jetpack_featured_media_url":"","_links":{"self":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/3917"}],"collection":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/comments?post=3917"}],"version-history":[{"count":1,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/3917\/revisions"}],"predecessor-version":[{"id":4613,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/posts\/3917\/revisions\/4613"}],"wp:attachment":[{"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/media?parent=3917"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/categories?post=3917"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/localhost:10003\/wp-json\/wp\/v2\/tags?post=3917"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}